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THE PROBLEM OF A PISTON IN STRATIFIED GAS WITH WEAKLY CHANGING PAtlAMETERS* 

I.S. MEN'SHOV 

The problem of a piston in gas whose initial parameters (density, temperature, and 

the adiabatic exponent) may vary along the normal to the direction of piston motion 

is considered. 

The uneven distribution of initial parametersin a medium can be duetoanumberoffactors. 

For instance, the effect of gravity leads to the stratification of gas by density and temper- 

ature. Stratification by density and the adiabatic exponent can be due to the presence in 

the gas of small solid particles. Indeed, if the nonequilibrium state ofthegas andparticle 

mixture is disregarded, assuming the temperatures and velocities of these to be the same /l- 

3/, the system of equations defining the flow of such medium is a set of equations of motion 

and mass and energy balance of some perfect gas with reduced physical parameters, viz. density 

P = Ps f ps and the adiabatic exponent k = (cp -I- XCJ (c, -I- xcJ1, where CIZ and C~ are specific heats 

of the gas phase, and cs is the specific heat of particles; pg and ps are, respectively, the 

densities of gas and particles. The quantity x = ~I,J~I~ is constant in particle and constinu- 

ous at the shock wave front. The nonuniform distribution of particles in the gas leads to 

stratification by density and the adiabatic exponent. This case is investigated below in con- 

nection with the problem of shock waves propagation in coal mines. Other variants of initial 

stratification can be dealt with in a similar manner. 

1. A flat piston whose plane lies in the YZ plane moves along theOX axis at constant 

velocity C in the quiescent gas with an admixture of solid particles. This mixture is defined 
by the initial pressure pa, constant density of the gas phase pgO, and variable solid phase 

density psO = &o* + Epg& (6Y), where 1 i 6 is some characteristic linear dimension, and p,qO* 

is a constant. The gas phase is assumed to be a perfect gas with the adiabatic exponent y. 

The piston motion through the medium induces the propagation of a curved shock wave, with a 

unsteady two-dimensional flow in the region between the shock wave and piston. We shall solve 

the problem in the single-fluid approximation. Then, as shown above, the flow of mixture is 

defined by two dimensional unsteady equations of adiabatic motion of gas, whose adiabatic ex- 

ponent depends on the flow parameters. We also assume that E<( 1, andshallsolvetheproblem 

in linear approximation /4-6/. 
. The flow of gas induced by the piston motion in a homogeneous medium (with constant in- 

itial density, E = 0) is defined,as known,by formulas 

C+D Pl 
-B--=-= PO 

PO* = Psa + P&?Ol MO=%, &=~, PSO 
xi) =- 

” 8 %o 
where D is the shock wave velocity relative to the piston, p,,* is the gas density, a, is the 

speed of sound, M, is the Mach number ahead of the shock wave front, pl, p1 are, respectively, 

the density and pressure of gas behind the shock, and k, is the adiabatic exponent. 

Owing to the nonuniform particle distribution, p erturbations of pressure p', density p' 

and of velocity components u' and v' propagate on this zero background. 

We introduce dimensionless coordinates, time and the dimensionless unknown functions 

5 r 6X, y = SY, r = &qt, 
u' v' 

ll=7-’ v=7. o=P 
PlQlC 

-_-. -_ - 
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where a, is the speed of sound behind the shock wave front in the unperturbed stream. The 

linearized equations for perturbations can now be reduced to the form 

The conditions at the shock wave front in dimensionless form are 

1+5 
u=~g,+(o+c+NY), v=-&gg, 

m = & + B (1 + a)+(Y) at x = 6% 

(1.2) 

where 

h=” 1 
&+I' o=yq, L=$, 

~=~(l+xo)(lc,+o), 
Cd @P - %l) 

k1 = (cn + XoCJ 

Ilr !Y) = g (T> y) = Zih6f (t, Y) 

and f(t,Y) is the deviation of the shock wave front from the straight line. At the piston 

surface z = 0 the condition u = 0 is satisfied. 
Differentiation of the last of formulas (1.2) along the line x = 87 with (1.1) taken in- 

to account enables us to eliminate from (1.2) g(T,y), and write the boundary conditions (1.2) 
as 

$=A+zq’, u=Bo+bg at z=/3t (1.3) 

A=+&), El=+ I+a a-- 

b= (a--l)(l--a) 
2 

At the initial instant of piston motion z = 0 the shock wave front coincided with the 
piston face, i.e. g(0, y)= 0. Then from the last formula of (1.2) follows that u = Owhen~ =O, 
and from the last formula of (1.3) we have w = -bB-‘$. Hence we must supplement boundarycon- 
ditions (1.3) with the initial conditions 

U= v=O, o = o&(y), mO= -bB-’ at x=~=0 (1.4) 

As the result, we have to solve the hyperbolic system of Eq.(l.l) in the region O,<r< 

8?-~<Y<-t~, 'c > 0 with boundary and initial conditions (1.3) and (1.4), and the condi- 
tion 

U=O at x=0 (1.5) 

2. In conformity with /6/ we carry out the coordinate transformation 

z = rsh0, r = rch0, Y=Y (2.1) 

and after such substitution and elementary transformations of system (1.1) obtain the system 
of equations 

$++$+chO+O, ~++$+sh+O (2.2) 

au sh 9 80 a. 
ch9F-FW+ ==O 

Condition (1.3), (1.4), and (1.5) can be similarly reduced to the form 

~=(AshBu--chBo)~+ashBo~'. u=Bw+b$ when 8=&, (2.3) 

u = 0 when 8 = 0; u=v=o, w = o,&(y) when r = 0 

As the result of coordinate transformation (2.1) the plane z = 0 becomes the plane 8 = 0, 
and plane x =j3t becomes plane0 = e,,,while the, = fi. 

Solution of the system of Eqs.(2.2) with conditions (2.3) can be obtained in the form of 
series 



336 

(2.4) 

where ok, z+, vk are functions of the single variable 0 that satisfy the recurrent formulas 

ah_ = 
Qh. cl1 kQ- Q7 ~11 k (0, -- 0) - pk ch k (A, - El) 

- 

Analysis of these formulas yields the following estimates: 

(2.5) 

which enable us using the explicit form of functions $(Y)E CW(-oo,~) to determine the con- 

vergence ofseries (2.4). In the particular case of bounded of derivatives of \1'(") and conver- 

gence of series 

then series (2.4) converge absolutely and uniformly when r< R for any R. 

3. The motion of a flat piston through a non-homogeneous gas containing dust canbeused 

as a model of expansion of explosion products, and apply the considered above problem to the 
study of shock wave propagation in coal mines. In the latter coal dust is usually distributed 
as follows: it is basically concentrated in a thin layer at the wall(Y= 0), with some part of 

it (e.g., dust particles of diameter 0.01-0.25 pm ) are suspended. The typical density 
distribution of coal dust can be approximately defined by the function 'p - erp ]-(6Y)'J (Fig. 

1). Hence we shall consider the problem formulated above using function J, of the form + :- 
esp(-y*). Solution (2.4) can then be represented in the form 

(3.1) 

u = exp C-Y”) [I 
m 

o. ch e - (Aoo -t a) sh 01 HI (Y) r - kg, UZh-+1H2k+I (YJ rzk+l} 

where H,,(y) are Hermite poly- 
nomials. Using inequalities 

(2.5) we can prove thattheser- 
ies in the right-hand sides of 

(3.1) converge absolutely and 
uniformly in a finite region 

and, consequently, formulas 
(3.1) represent the sought solu- 

tion. 
Let us now consider the 

initial instant of piston mo- 

tion which corresponds to small 

r. Rejecting in (3.1) the 
terms 0 (P), we obtain 
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w = w,exp(-y2), u = 0 

u = [q, chO - (AU,, $ a)sh Ol H,(y) exp(-y')r 

Reverting to the old coordinates 7, 5, we obtain the following velocity distribution: 

u = 0, v = 2y [war - (Am, + a)tlexp (-y') (3.2) 

These formulas imply that the particle vertical velocity component 

U&J=- 2$$$$- ~yexp(- y") 

is negative at the shock wave front, while the component 

u \I=0 = 20,ry exp (-y'), o. = fi (1 - a)(1 - a)(1 + u)-l 

at the piston is positive, since w,>O. The latter is due to that 

a=&<l, a = C$ (c, - cn) (1 + %) v% + “) CR (cp - C”) 
ko Cc, + w,)” P, + 1) G cc3 

and the quantity C, (Cp - c,)/c, 2 for a mixture of coal dust and air is 0.38. 
A characteristic velocity profile is shown in Fig.1 for some in instant of time I,,. 
Thus a (dust) particle immediately after the shock wave passage begins to move downward 

toward the wall. After some time it stops and, then begins to move upward. On the basis of 
formulas (3.2) the particle trajectory can be represented as follows: 

Y 
5 (7) = x0, s Ty dy=$[00(7*--ze2)-2x(1(Awo +a)(.T--o)l 

ilo 
(3.3) 

where 20. Y, are the coordinatesof the particle at some initial instant of time T,,. In the 
coordinate system attached to the piston,particle trajectories are straight lines parallel to 
the OY axis; the law of motion of particles along these trajectories is determined by the 
second of formulas (3.3). The curve of function Y =Y(t) defined by that formula is shown 
in Fig.2 for several Y,, witht, = IOOps being the instant of time at which the shock wave 
passes over the particle considered, i.e. X, = Dt, and (x,, = 0.1, C = 2.103 m/s, 6=10* m-l, 
E = 0.1, a, = 342.8 m/s). Within the time intervai 

AT= %(5t-a) 
hh (1 - cs) (1 -a) 

the particle returns to its initial position and, then continues to move upward. 
The described effect has a simple explanation. Under otherwise equal conditions, pres- 

sure behind the shock wave front is the higher the density ahead of the shock, and the higher 
the density the lower the shock wave velocity. The 

'V,cm I 2 3 equation of the shock wave front is determined by 
2 

/ v 
the first and last of Eqs.(l.2), and is of the form 

0 
6 12 24 X,cm 

Fig.3 g (y, T) = - 23!!FJs z exp (-y?) 

Form of the shock wave is presented in Fig.3 at instants of time t,= 200~~ 
t, = 800psforxn = 0.1, C = 2.103m/s, 6 - 102m-' ,,E = 0. i,a, = 342.8m/s by curves l- 3. 

t, = 400 ps ( 
It dill be seen 

that the shock wave front is distorted near the wall, by virtue of which particles behindthe 
wave first move down toward thewalland, then because of the pressure gradient in the direc- 
tion of Y are lifted upward. 

An explosion in a mine results in the dust concentrated near the wall becoming suspended 
after the passage of a shock wave. Experiments had shown the lifting of dust begins after 
some time interval (e.g., of 300 ys , in experiments described in /7/). The analysis of solu- 
tion carried out above shows that the effect of time lag in the liftingofdustcanbeexplained 
within the framework of this problem. 

The author thanks V.P. Korobeinikov for help and remarks. 
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